Jacob Boschee

Docker inVMs



Containers and Docker

* What is a container?
e Software boxes
e Linux chroot

* What does Docker provide?
* Full bundle of software
* Static, reproducible environments
* Hardware and OS agnostic

App A

Bins/Libs

O

D

App B

Bins/Libs

CONTAINER

Docker

Host OS

Infrastructure

App C

Bins/Libs



Why use Docker for my research?

* Reproducibility
* Need to make sure your results can be duplicated

 Software dependency trees can be massive and making sure all packages
match is challenging



Why user Docker for my Research?

* Software environments
* Does your research depend on software that has been out of development
for years (or even decades)?
* Do you need access to libraries that are no longer offered by current
system distributions?
* How many hours does it take to set up your environment for your software
when you need to deploy to a new system?



Docker structure vs VM structure

* Docker

e Stateless
 Run within a common Linux

kernel

* Accesses hardware through the

kernel interfaces

App A

Bins/Libs

CONTAINER
App B

Bins/Libs

Docker

Host OS

Infrastructure

App C

Bins/Libs

e VM
e Statefull

* Run multiple kernels under a

hypervisor

e Each kernel accesses hardware
through the hypervisor

App A

Bins/Libs

Guest OS

VM
App B
Bins/Libs

Guest OS

Hypervisor

Infrastructure

App C

Bins/Libs

Guest OS



Dockers and Repositories

 Docker Hub

* Base clean images to build new custom Docker containers from

e Github

* Specialized Docker images for scientific workflows

* Local custom built images for your workgroup



Installing and setting up your Docker

e See Exercise #1 and Exercise #2



Interfacing with Docker containers

* Launching a shell within a Docker container
* docker run and docker start with the -i flag

* Stateless but still flexible
e Docker environment variables
* Docker external mounts
* Docker forwarded ports

volume




Docker Environment Variables

* External configuration of Docker containers at runtime

* Environment variables can be used to pass input parameters
* File names
* Software calculation settings
 External web locations for input files

* Use the -e flag to define on runtime
* dockerrun-e OMP_THREADS=32 docker_image



Docker external mounts

* Docker maintains its own private filesystem within its container
* Mounting from the host system is possible however

e Allows full directories to be shared with the host and container for
ease of importing files or exporting results

* Use -v flag to define mount points from the host to the container
* docker run -v [tmp/my_inputs:/tmp/my_workdir docker_image

* Files in or written to the directories on the host or container side are
preserved on the host even when removing containers



Docker forwarded ports

* Some Docker containers need access to external ports

* Jupyter Notebooks (8888)
* Apache web connections (8o and 443)

* They can be mapped from the host of the container into the container

by use of the -p flag
* dockerrun -p 8888:8888 docker_image
* The host will forward incoming connections

to the first specified port to inside the SRETeTE e
container with the second specified port ‘

N C
Port S0 LA H-’

Public Internet

docker run -d --name webserverl —pk 80:30 microsoft/iis




Docker Execution and Shell

* See Exercise 3:



Images and Containers

* Immutable vs Stateful

* Once built images will always produce the same initial state when used to
create a new container

* Containers will remember their state between starting and stopping

* Best practice is to create an image with an initial setup that can run
the container to completion and then delete the container

* This ensures reproducibility with the workflow



Modifying Containers

* Interactive sessions
 Grants a user a full root shell within the container

* Modifications made will persist within the container until it is
removed

* Image that the container was created from does not change



Building New Images

* Multiple way to get new images for Docker
* DockerHub for standardized images
* Importing Docker images generated by other users
* Using a current container and ‘commit’ing the container to create an
image
* Using a Dockerfile to build a new image off of an existing image

Dockerfile Docker Image Docker Container




Docker Files

* Allows a user to specify and build a new Docker image to their needs
* Runs a set of commands on building the image to prepare the state

* For running non-interactively sets a command and work directory for
the image

* May also set default Docker options that can be overridden at run time
* Mounts, Environment Variables, Ports, ect.



Building a Custom Image

* See Exercise 4



Singularity and HPC Containers

* Docker and elevated permissions
* On multi-user systems this will be restricted

* Singularity is the solution for HPC
* Excellent way to port complicated python environments

* ComputeCanada’s guide to Singularity:
https://docs.computecanada.ca/wiki/Singularity



https://docs.computecanada.ca/wiki/Singularity

Question and Answers



